
Merit Research Journal of Business and Management (ISSN: 2408-7041) Vol. 4(3) pp. 018-026, June, 2016
Available online http://www.meritresearchjournals.org/bm/index.htm
Copyright © 2016 Merit Research Journals

Review

Recent Advances in Software Quality Management: A
Review

Boby John1*, R. S. Kadadevaramath2 and Edinbarough A. Immanuel3

Abstract

1
Indian Statistical Institute, Bangalore,

India

2
Siddaganga Institute of Technology,

Tumkur, India

3
The University of Texas at
Brownsville, Texas, USA

*Corresponding Author’s Email:

boby@isibang.ac.in

Many organizations has been utilizing the benefits of information
technology to gain competitive advantage in their respective businesses. As
a result, the number of software development companies increased many
folds during the last three decades. As the competition increased, the need
for delivering good quality software within the committed schedule also
increased. Even today many software companies have to deal with the
consequences of delivering poor quality products, schedule and cost
overrun problems. Many software quality and development frameworks have
been suggested in the past to get rid of the aforementioned problems and a
lot of research has been carried out in the field of software quality
management and practices. In this paper, the authors provide a review of
the major research works published in the field of software quality
management. The study found that the research works in the software
quality can be classified into five categories namely studies exploring the
relationship between software quality and (i) total quality management
implementation, (ii) adoption of quality management systems like ISO 9000
series of standards, (iii) capability maturity model level, (iv) development of
defect prediction models and (v) quality management and evaluation
practices of specific categories of software development process. The
authors also tried to identify the gaps in existing research and future areas
of research in software quality management.

Keywords: Capability maturity model, Defect prediction models, ISO 9000,
Quantitative project management, Software quality, Total quality management

INTRODUCTION

Surviving in a globalised business world is not easy
unless the organizations have a competitive advantage
(Kanji and Asher, 1999; Samason and Terziovski, 1999
and Adam et al., 2001). During the past three decades,
many organizations deploy information technology (IT) to
gain the aforementioned competitive advantage. The IT
industry has witnessed tremendous growth in the last
three decades. The Gartner group estimated even a
decade ago that the worldwide user spending on
software exceeded $730 billion and that in the packaged
software market topped $176 billion (Shiffler, 2003; IDC,
2003). Many business organizations are using IT as a
means to achieve operational efficiency, improved

productivity and service quality and responsiveness
(Mooney et al., 1996).

As the demand for software products increased, the
number of software development firms also increased.
Even though the number of software development firms
increased rapidly, delivering quality software products
without cost and schedule overrun has been always a
challenge in software industry (Pearson et al., 1995;
Phan et al., 1995). A study by US General Accounting
Office (1973) reported that many government software
projects were never delivered or couldn’t be used and
had cost over runs or schedule overruns. The breakup
of software project problems (Osmundson et al., 2002)

Boby et al. 019

Figure 1. Break up software projects with problems

published by the study is given in figure 1.

Many software firms has comprised on quality to meet
the schedule pressure and control the development costs
leading to detecting higher number of defects at customer
end (Kemerer, 1997). The lack of quality had significant
costs to the suppliers who face dissatisfied customers,
loss of market share and rework of rejected systems
(Sibisi and Waveren, 2007). Hence producing quality
software within the committed time and cost are very
important for the survival of software development
organizations in the highly competitive information
technology industry.

Defining software quality is not easy and there is no
single adequate measure for software quality. Fenton and
Bieman (2014) suggested measuring software quality in
terms of delivered defect density. The delivered defect
density is the number of defects per unit size. According
to ISO/IEC 9126 – 1, the software quality model has six
characteristics namely functionality, reliability, usability,
efficiency, maintainability and portability (Al-Kilidar et al.,
2005). ISO 9126 (1991) defined software quality as the
totality of features and characteristics of a software
product that bear on its ability to satisfy stated and
implied needs of the customer. The widely adopted
Capability Maturity Model (CMM) developed by Software
Engineering Institute (SEI) of the Carnegie Mellon
University classifies the software process into five
maturity levels namely initial, repeatable, defined,
managed and optimizing (Paulik et al., 1994). In short,
there has been a variety of approaches and guidelines
suggested for software quality management and
improvement.

The purpose of this paper is to review the literature on
recent advances in software quality management and

identify the major gaps in the research. The remaining
part of the paper is organized as follows: The review
methodology is described in section 2, the literature
review analysis is given in section 3 and the conclusions
and areas of future research are summarised in section
4.

REVIEW METHODOLOGY

In the recent past numerous books have been written,
papers have been published, conferences have been
organised on various approaches for measuring and
improving software quality and software quality
management practices. The aim of this paper is to
provide a comprehensive review on the recently
published scientific literature on software quality
management and related topics.

The review process started with searching for relevant
articles. The focus is on papers and books published in
English from 1990 onwards. Only articles published in
journals, books or presented in conferences are included
in the review. The authors searched the popular research
databases like ScienceDirect, ieee xplore, google scholar
and researchgate using software quality, software quality
management or software quality prediction as key words.

Six hundred and twenty four articles suggested by the
databases are identified for the survey. After going
through the key words and abstracts, 196 articles were
shortlisted for detailed study. Another 79 papers were
also excluded after reading the full text as they were not
directly related to the topics of interest. The remaining
117 articles were reviewed in this study. The details are
given in figure 2.

020 Merit Res. J. Bus. Manag.

Figure 2. Details of articles chosen for review

Table 1. Category wise number of articles reviewed

Number Category Number of Articles

1 Total Quality Management 13
2 Quality Management Systems 10
3 Capability Maturity Model 11
4 Quality Prediction Models 70
5 Others 13

The details of review analysis for each groups is as follows:

Literature Review Analysis

The authors carried out detailed analysis on the articles
selected for the study and classified the articles into five
different categories based on the topics of their research.
The grouping had enabled the authors to summarise the
findings and identify the future research areas. The
number of papers reviewed under each category is given
in table 1.

Total Quality Management and Software Quality

The universal acceptance of the TQM has inspired
software firms to adopt it to their industry (Cortada, 1995,
Alkhafaji et al., 1998; Bhattacharya et al., 1998).
Parzinger and Nath (2000) studied the relationship
between TQM implementation factors and various
measures of software quality. The study showed that the
TQM implementation factors have significant positive
correlation (p value < 0.01) with the software quality
measures except cost of quality (p value > 0.05).

Li et al., (2000) suggested an approach to instil TQM
method in software development process. Issac et al.,
(2004) proposed a holistic conceptual framework for

implementation of TQM in software industry. The
framework suggest to constantly measure the
performance of the system using metrics, analyse with
respect to the benchmarks set and provide feedbacks to
the system to take necessary corrective steps. Carrol
(1995; Camuoff et al., 1990) argued that the application
of the key elements of TQM in software development has
the potential to improve the software quality. Many
researchers (Munson and Khoshgoftaar, 1992; Zardony
and Tumanic, 1992; Gong et al., 1998) studied the
application of TQM concepts like statistical quality control
and quality function deployment on software quality.
Walrad and Moss (1993) observed that the impact of
TQM techniques on system quality depends on effective
linking of product and process metrics to system quality
objectives.

Even though the research suggested positive
correlation between TQM implementation and software
quality, most of the works were on conceptual framework
or empirical studies based on the analysis of survey data.

Quality Management Systems and Software Quality

The International Organization for Standardization (ISO)

and International Electrotechnical Commission (IEC) has
published two series of standards namely ISO/IEC 9126
for software product quality and ISO/IEC 14598 for
evaluation of software products (Suryn et al., 2003). The
ISO/IEC 9126 standard suggested a quality model
comprising of six characteristics and 27 sub
characteristics of software product quality.

Shem et al, (2015) showed that generally there exists
positive correlation between implementation of standards
and product quality. Jung et al, (2004) conducted a
survey among users of a packaged software product to
evaluate the structure of the software quality model
proposed in ISO /IEC 9126 – 1. The study revealed that
ambiguities exist in the way that ISO/IEC 9126 is
structured and the sub characteristics categorization isn’t
consistent with the ISO/IEC 9126 definition. Balla et al.,
(2001) published a case study on the success of ISO
certification in a software company in Hungary. According
to the study, working in conformance with QMS caused
about 30% of extra effort in small projects and about 10 –
20 % in bigger projects. But the advantages were
perceived to outweigh the costs. Yang (2001) studied the
attributes of the software quality given in ISO 9000
standard and its usefulness in estimating the software
product quality. Paulk (1993) observed that there exists
strong correlation between ISO 9000 standard and CMM
frame work. Franch and Carvallo (2003) developed a
quality model for choosing off the shelf software
packages based on ISO / IEC 9126 – 1 standard. Coallier
(1994) explored the fitment of ISO 9000 standards for
software development process. The study found that ISO
9001 / 9000 – 3 only partially supports the assets needed
to deliver the software when it is required with minimum
life cycle costs. Al – Kilidar et al., (2005) reported an
empirical study on application of ISO / IEC 9126 to
software design documents and found that the standard
has ambiguity and overlap in some concept definitions,
doesn’t consider reliability and maintainability as well as
validity and modularity of design products. Jenner (1995)
showed how ISO 9001 can be used for software
development process.

The review of the literature had thrown out conflicting
findings. While many of the studies suggested
improvement in quality with the implementation of quality
management systems or standards, there were studies
disagreeing with the aforementioned conclusion.
Unfortunately most of the papers were empirical studies
based on survey data.

Capability Maturity Model and Software Quality

The capability maturity model (CMM) developed by the
software engineering institute (SEI) of Carnegie Mellon
University is one of the widely accepted framework for
characterising the capability of software development
processes (Pressman, 2005).

Boby et al. 021

Harter et al., (2000) empirically investigated the
relationship between process maturity measured in CMM
maturity scale, product quality, development cycle time
and effort. The study found that 1% improvement in
process maturity is associated with a 1.589% increase in
product quality. The other findings of the study are higher
the quality, lower is the cycle time and development
effort. Herbsleb et al., (1997) also showed that CMM
levels influence the software quality and project
performance variables. Zimmerman (2001) suggested
that poor planning and lack of training are two root
causes of software project failure. Many other studies
also showed that higher CMM levels are associated with
improved software quality (Zimmerman, 2001; Lawlis et
al., 1995; Krishnan, 1996; Subramanian et al., 2007).

But Hansen et al., (2004) pointed out that the
evidence for higher CMM levels are associated with
higher quality are limited and not based on reflective
models.

Higher maturity levels (level 4 and 5) of capability
maturity model requires the quantitative management of
the process (C P Team, 2006), which means the process
need to be controlled by statistical and other quantitative
techniques. Tamura (2009) developed three process
performance models using regression techniques, one for
achieving product quality objectives (defect density) by
controlling requirement inspection rate (pages per hour)
and prototype developed or not. The second one for
achieving code review yield (% of defects present in the
software that are removed by the review) targets by
controlling review rate (the number of lines of code
reviewed per hour). The third model is to manage the
escaped unit test defect density using test coverage as
controllable variable. Hao and Zhang (2011) also
developed a model for delivered defect density in terms
of average team skill level and test coverage as
controllable variables.

Majority of the papers suggested that higher maturity
levels were attached with better software quality. Except
the research on developing process performance models,
the remaining articles were mostly based on empirical
evidence.

Development of Defect Prediction Models

From 1970s onwards one major area of research in
software quality has been the development of defect
prediction or classification models. The important papers
published on defect prediction models from 1990s
onwards along with the methodology used is summarised
in table 2.

The breakup of different techniques used to develop
the prediction models is given in figure 3. Most of the
models used static code attributes like code complexity,
etc as predictors those are not routinely measured by
the project managers and may not be under their control.

022 Merit Res. J. Bus. Manag.

Table 2. Research on developing defect prediction models

SL No Methodology Details

1. Regression Analysis Regression with different intercepts and slopes (Nagappan et al, 2005), Logistic
regression (Khoshgoftaar and Allen 1999; Cruz and Ochimizu 2009), Zero-inflated
negative binomial regression (Succi et al., 2001), Zero – inflated Poisson regression
(Khoshgoftaar, 2001), Regression via classification (Bibi et al., 2006), Linear mixed-
effects regression models (Binkley, 2007)

2 Multivariate Analysis Factor analysis (Khoshgoftaar and Munson, 1990; Munson and Khoshgoftaar,
1990), Principal component analysis (Niel, 1992;
John and Kadadevaramath, 2014), Discriminant analysis (Schneidewind, 2001;
Khoshgoftaar and Seliya, 2002)), Cluster Analysis (Sandhu et al., 2010), Singular
value decomposition (Sherriff et al., 2007)

3 Machine learning
techniques

Neural Networks (Khoshgoftaar et al., 1995; Khoshgoftaar et al., 1997; Mair et al.,
2000; Kanmani et al., 2004; Pedberg et al., 2004; Thwin, and Quah, 2005; Bezerra
et al., 2007; Kanmani et al., 2007; Singh et al., 2008;Tao and Wei-hua, 2010),
Bayesian Networks (Fenton and Niel, 1999; Amazaki et al., 2003; Fenton et al.,
2007, Menzies et al., 2007,Pai and Dugan, 2007; Turhan and Bener, 2007; John,
2012), Classification and Regression Tree (Porter and Selby, 1990; Khoshgoftaar et
al., 1999; Koru and Liu, 2005; Menzies et al., 2003; Khoshgoftaar and Seliya,
2003b; Khoshgoftaar and Seliya, 2002; Knab et al., 2006; Ceylan et al., 2006),
Random Forest (Guo et al., 2004; Kaur and Malhotra, 2008), Rough Sets (Morasca
and Ruhi, 1996; Yang and Li, 2008), Instance based learning (Ganesan et al.,
2000; Emam et al., 2001; Khoshgoftaar and Seliya, 2003a; Khoshgoftaar et
al.,2006; Challagulla et al., 2006), Support Vector Machines (Elish and Elish,
2008), Self Organizing Maps (Reformat et al., 2003; Mahaweerawat et al., 2007),
Genetic Programming (Afzal and Torkar, 2008; Afzal et al., 2008), Particle Swarm
Optimization (De Carvalho et al., 2008; Cong et al., 2010; De Carvalho et al., 2010),
Grey Prediction Theory (Zhu and Wu, 2009), Dempster-Shafer Belief Networks
(Guo et al., 2003), Fuzzy Logic (Xu et al., 2000; Yuan et al., 2000; Reformat, 2003;
Yang et al., 2007; Hribar and Duka, 2010), Recency Weighting Technique (Joshi et
al., 2007), Spam Filter Approach (Mizuno et al., 2007), Weighted Similarity
Modelling (Nagwani and Verma, 2010), Association Rule Mining (Song et al., 2006)

Figure 3. Breakup of different algorithms used to develop used in fault prediction models

Moreover software quality depends on people related
factors like programmer skills, level of expertise, domain
knowledge, etc (Antony and Fergusson, 2004). Hence
the process performance models developed as per the

guidelines of CMM frame work would be more useful for
quantitatively managing the software development
process.

Boby et al. 023

Table 3. Management and evaluation practices of specific categories of software development

SL No. Details

1 Comparison of quality of the software developed by distributed teams and collocated teams (Bird
et al., 2009)

2 Development of metric based approach and software engineering metrics to ensure the quality of
systems developed using commercial off the shelf components (COTS) (Sedigh-Ali et al., 2001;
Rawashdeh and Matalkah, 2006)

3 Comparison of quality of software as a service (offering software using a subscription model) with
software offered using perpetual licensing model (Choudhary, 2007)

4 Comparison of quality of open source applications with that of commercially developed software
(Stamelos et al., 2002; Raymond, 2001; Aberdour, 2007)

5 Application of quality function deployment (QFD) on improving software quality (Liu, 2000; Islam
and Hasin, 2014)

6 Application of fuzzy logic on quality improvement (Liu et al., 2006), effect of project management
policies on software quality (Garcia et al., 2008), effect of various software process improvement
(SPI) methodologies on software quality (Ashrafi, 2003)

Management and evaluation practices of specific
categories of software development process

Apart from studying the effect or TQM, ISO, CMM and
defect prediction modelling on software quality, lot of
research has also been carried out in the field of
management and evaluation practices of specific
categories of software development process. The
important among them are summarized in table 3.

CONCLUSION AND FUTURE RESEARCH WORK

The paper presented a literature review on software
quality management practices. The review revealed that
the important articles published recently can be classified
into five groups namely those studying the impact of (i)
TQM implementation on software quality, (ii) ISO 9000
certification on software quality, (iii) adoption of CMM
framework on software quality, (iv) development of
software quality prediction models and (v) Management
and evaluation practices of specific categories of
software development process.

The published articles suggested that there is positive
correlation between TQM implementation and software
quality as well as CMM frame work and software quality.
These studies are carried out using empirical data
collected through survey. The future researchers can fine
tune these findings through correlating quantitative
measures of software quality with that of TQM, ISO,
CMM implementation. The researchers can also establish
the correct relationship between ISO certification and
software quality as the past studies showed that ISO
certification has conflicting results.

A lot of research has been carried out on developing
software quality prediction models to either predict the
software faults or classify software modules as fault
prone or not. Some of the drawbacks of these models are
as follows: There is no one best model suitable for all

types of software development. In fact the research on
comparison of these models suggested that different
models need to use for different type of scenarios.
Moreover majority of these models use static code
attributes like code complexity, etc as predictors. Many of
these factors are not routinely measured by the project
managers and also many of these factors may not be
under the control of project managers. Most of these
models used data available in the public domain like
NASA website, etc. The research on developing fault
prediction models using industry data are still in the
nascent stage. The review showed that process
performance models developed under the quantitative
project management process area of CMM framework
are more suitable for quantitatively manage the software
development process. But these models are mostly
based on regression or simulation techniques. The
development of process performance models using
different algorithms, especially the machine learning
algorithms will be an important area of future research.
Moreover the review showed that there is good
correlation exit between software quality, productivity,
cycle time, and development effort. Hence it is required to
develop models or methodologies to quantitatively
manage multiple performance characteristics
simultaneously. Moreover many of the performance
characteristics are qualitative. Hence the models for
simultaneously monitoring of quantitative and qualitative
performance characteristics will be another important
area of future research.

REFERENCES

Aberdour M (2007). Achieving quality in open-source software. IEEE

Software 24(1): 58-64.
Adam EE, Flores BE and Macias A (2001). Quality improvement

practices and the effect on manufacturing firm performance:
evidence from Mexico and the USA. Int. J. Prod. Res. 39(1): 46 –
63.

Afzal W and Torkar R (2008). A comparative evaluation of using genetic

024 Merit Res. J. Bus. Manag.

programming for predicting fault count data. In Third IEEE
International Conference on Software Engineering Advances: 407-
414.

Afzal W, Torkar R and Feldt R (2008). Prediction of fault count data
using genetic programming. In IEEE International Multitopic
Conference: 349-356.

Alkhafaji AF, Youssef MA and Sardessia R (1998). TQM, strategic
management and business process re-engineering: the future
challenge. International Journal of Technology Management 16(4-
6): 383-392.

Al-Kilidar H, Cox K and Kitchenham B (2005). The use and usefulness
of the ISO/IEC 9126 quality standard. In Proceedings of IEEE
International Symposium on Empirical Software Engineering: 7-pp.

Amasaki S, Takagi Y, Mizuno O and Kikuno T (2003). A bayesian belief
network for assessing the likelihood of fault content. In 14th IEEE
International Symposium on Software Reliability Engineering: 215-
226.

Antony J and Fergusson C (2004). Six Sigma in the software industry:
results from a pilot study. Managerial Auditing Journal 19(8): 1025-
1032.

Ashrafi N (2003). The impact of software process improvement on
quality: in theory and practice. Information & Management 40(7):
677-690.

Balla K, Bemelmans T, Kusters R, and Trienekens J (2001). Quality
through managed improvement and measurement (QMIM):
Towards a phased development and implementation of a quality
management system for a software company. Software Quality
Journal, 9(3): 177-193.

Bezerra ME, Oliveira AL and Meira SR (2007). A constructive rbf neural
network for estimating the probability of defects in software
modules. In IEEE International Joint Conference on Neural
Networks: 2869-2874

Bhattacharya TK, AlDiab-Zoubi T and Sukar A (1998). Application of
total quality management concepts to a business school.
International Journal of Technology Management 16(4-6): 520-531.

Bibi S, Tsoumakas G, Stamelos I and Vlahavas IP (2006). Software
Defect Prediction Using Regression via Classification. In AICCSA:
330-336.

Binkley D, Feild H, Lawrie D and Pighin M (2007). Software fault
prediction using language processing. Testing: IEEE Academic and
Industrial Conference Practice and Research Techniques: 99-110.

Bird C, Nagappan N, Devanbu P, Gall H and Murphy B (2009). Does
distributed development affect software quality?: an empirical case
study of Windows Vista. Communications of the ACM 52(8): 85-93.

Camuffo M, Maiocchi M and Morselli M (1990). Automatic software test
generation. Information and Software Technology 32(5): 337-346.

Carroll J (1995). The application of total quality management to
software development. Information Technology & People 8(4): 35-
47.

Ceylan E, Kutlubay FO and Bener AB (2006). Software defect
identification using machine learning techniques. In 32nd IEEE
EUROMICRO Conference on Software Engineering and Advanced
Applications: 240-247.

Challagulla VU, Bastani FB and Yen IL (2006).‘A unified framework for
defect data analysis using the mbr technique. In 18th IEEE
International Conference on Tools with Artificial Intelligence: 39-46.

Choudhary V (2007). Comparison of software quality under perpetual
licensing and software as a service. Journal of Management
Information Systems 24(2):141-165.

Coallier F (1994). How ISO 9001 fits into the software world. IEEE
Software 11(1): 98-100.

Cortada JW (1995). TQM for information systems management: quality
practices for continuous improvement, McGraw-Hill, Inc.

Cruz AC and Ochimizu K (2009). Towards logistic regression models for
predicting fault-prone code across software projects. In 3rd IEEE
International Symposium on Empirical Software Engineering and
Measurement: 460-463.

De Carvalho AB, Pozo A and Vergilio SR (2010). A symbolic fault-
prediction model based on multiobjective particle swarm
optimization. Journal of Systems and Software 83(5): 868-882.

De Carvalho AB, Pozo A, Vergilio S and Lenz A (2008). Predicting fault
proneness of classes trough a multiobjective particle swarm

optimization algorithm. In 20th IEEE International Conference on
Tools with Artificial Intelligence 2: 387-394.

El Emam K, Benlarbi S, Goel N and Rai SN (2001). Comparing case-
based reasoning classifiers for predicting high risk software
components. Journal of Systems and Software 55(3): 301-320.

Elish KO and Elish MO (2008). Predicting defect-prone software
modules using support vector machines. Journal of Systems and
Software 81(5): 649-660.

Fenton N and Bieman J (2014). Software metrics: a rigorous and
practical approach, CRC Press.

Fenton N, Neil M, Marsh W, Hearty P, Marquez D, Krause P and Mishra
R (2007). Predicting software defects in varying development
lifecycles using Bayesian nets. Information and Software
Technology 49(1): 32-43.

Fenton NE and Neil M (1999). A critique of software defect prediction
models. IEEE Transactions on Software Engineering 25(5): 675-
689.

Franch X and Carvallo JP (2003). Using quality models in software
package selection. IEEE Software 20(1): 34-41.

Ganesan K, Khoshgoftaar TM and Allen EB (2000). Case-based
software quality prediction. International Journal of Software
Engineering and Knowledge Engineering 10(2): 139-152.

García MNM, Román IR, Peñalvo FJG and Bonilla MT (2008). An
association rule mining method for estimating the impact of project
management policies on software quality, development time and
effort. Expert Systems with Applications 34(1): 522-529.

Gong B, Yen DC and Chou DC (1998). A manager's guide to total
quality software design. Industrial Management & Data Systems
98(3): 100-107.

Guo L, Cukic B and Singh H (2003). Predicting fault prone modules by
the dempster-shafer belief networks. In Proceedings of 18th IEEE
International Conference on Automated Software Engineering: 249-
252.

Guo L, Ma Y, Cukic B and Singh H (2004). Robust prediction of fault-
proneness by random forests. In 15th IEEE International
Symposium on Software Reliability Engineering: 417-428.

Hansen B, Rose J, and TjøRnehø JG (2004). Prescription, description,
reflection: the shape of the software process improvement field.
International Journal of Information Management 24(6): 457-472.

Hao Y and Zhang YF (2011). Statistical prediction modeling for software
development process performance. In 3rd IEEE International
Conference on Communication Software and Networks (ICCSN):
703-706.

Harter DE, Krishnan MS and Slaughter SA (2000). Effects of process
maturity on quality, cycle time, and effort in software product
development. Management Science 46(4): 451- 466.

Herbsleb J, Zubrow D, Goldenson D, Hayes W and Paulk M (1997).
Software quality and the capability maturity model. Communications
of the ACM 40(6): 30-40.

Hribar L and Duka D (2010). Software component quality prediction
using KNN and Fuzzy logic. In Proceedings of the 33rd IEEE
International Convention MIPRO: 402-408.

IDC (2003). Worldwide black book Q2.
Islam KD and Hasin AA (2014). A quality transfer of the requirements of

teachers into technical requirements: Use of House of Quality
(HOQ) matrix in Quality Function Deployment (QFD). Merit
Research Journal of Business and Management 2(1): 7 – 12.

ISO/IEC International Standard 9126 (1991). Information Technology -
Software product Evaluation - Quality Characteristics and
Guidelines for their use, International Standards Organization.

Issac G, Rajendran C and Anantharaman RN (2004). A conceptual
framework for total quality management in software organizations.
Total Quality Management & Business Excellence 15(3): 307-344.

Jenner MG (1995). Software quality management and ISO 9001: how to
make them work for you, John Wiley & Sons, Inc.

Jin C, Dong EM and Qin LN (2010). Software fault prediction model
based on adaptive dynamical and median particle swarm
optimization. In 2nd IEEE International Conference on Multimedia
and Information Technology 1: 44-47.

John B (2012). Modeling the Defect Density of Embedded System
Software Using Bayesian Belief Networks: A Case Study. Software
Quality Professional 14(3): 39 – 45.

John B and Kadadevaramath RS (2014). A methodology for achieving

the design review defect density goals in software development
process. International Journal of Manufacturing, Industrial &
Management Engineering 2(1): 181 – 191.

Joshi H, Zhang C, Ramaswamy S and Bayrak C (2007). Local and
global recency weighting approach to bug prediction.
In Proceedings of the Fourth IEEE International Workshop on
Mining Software Repositories: 33.

Jung HW, Kim SG and Chung CS (2004). Measuring software product
quality: A survey of ISO/IEC 9126. IEEE software 5: 88-92.

Kanji GK and Asher M (1999). 100 Methods for Total Quality
Management, Sage Publishers, New Delhi. India.

Kanmani S, Uthariaraj VR, Sankaranarayanan V and Thambidurai P
(2004). Object oriented software quality prediction using general
regression neural networks. ACM SIGSOFT Software Engineering
Notes 29(5): 1-6.

Kanmani S, Uthariaraj VR, Sankaranarayanan V and Thambidurai P
(2007). Object-oriented software fault prediction using neural
networks. Information and software technology 49(5): 483-492.

Kaur A and Malhotra R (2008). Application of random forest in
predicting fault-prone classes. In IEEE International Conference on
Advanced Computer Theory and Engineering: 37-43.

Kemerer CF (1997). Software project management readings and cases,
McGraw-Hill, New York, USA.

Khoshgoftaar TM and Allen EB (1999). Logistic regression modeling of
software quality. International Journal of Reliability, Quality and
Safety Engineering 6(4): 303-317.

Khoshgoftaar TM and Munson JC (1990). Predicting software
development errors using software complexity metrics. IEEE Journal
on Selected Areas in Communications 8(2): 253-261.

Khoshgoftaar TM and Seliya N (2002). Improving usefulness of
software quality classification models based on boolean discriminant
functions. In Proceedings of 13th IEEE International Symposium on
Software Reliability Engineering: 221-230.

Khoshgoftaar TM and Seliya N (2002). Tree-based software quality
estimation models for fault prediction. In Proceedings of Eighth
IEEE Symposium on Software Metrics: 203-214.

Khoshgoftaar TM and Seliya N (2003a). Analogy-based practical
classification rules for software quality estimation. Empirical
Software Engineering 8(4): 325-350.

Khoshgoftaar TM and Seliya N (2003b). Software quality classification
modeling using the SPRINT decision tree algorithm. International
Journal on Artificial Intelligence Tools 12(3): 207-225.

Khoshgoftaar TM, Allen EB, Hudepohl JP and Aud SJ (1997).
Application of neural networks to software quality modeling of a very
large telecommunications system. IEEE Transactions on Neural
Networks 8(4): 902-909.

Khoshgoftaar TM, Allen EB, Jones WD and Hudepohl JP (1999).
Classification tree models of software quality over multiple releases.
In Proceedings of 10th IEEE International Symposium on Software
Reliability Engineering: 116-125.

Khoshgoftaar TM, Gao K and Szabo RM (2001). An application of zero-
inflated Poisson regression for software fault prediction. In
Proceedings of 12th IEEE International Symposium on Software
Reliability Engineering: 66-73.

Khoshgoftaar TM, Pandya AS and Lanning DL (1995). Application of
neural networks for predicting program faults. Annals of Software
Engineering 1(1): 141-154.

Khoshgoftaar TM, Seliya N and Sundaresh N (2006). An empirical study
of predicting software faults with case-based reasoning. Software
Quality Journal 14(2): 85-111.

Knab P, Pinzger M and Bernstein A (2006). Predicting defect densities
in source code files with decision tree learners. In Proceedings of
the 2006 international workshop on Mining software repositories:
119-125.

Koru A and Liu H (2005). Building effective defect-prediction models in
practice. IEEE Software 22(6): 23-29.

Krishnan MS (1997). Cost and quality considerations in software
product management, Carnegie Mellon University.

Li EY, Chen HG and Cheung W (2000). Total quality management in
software development process. The Journal of Quality Assurance
Institute 4(1): 35 - 41.

Boby et al. 025

Liu XF (2000). Software quality function deployment. IEEE Potentials

19(5): 14-16.
Liu XF, Kane G and Bambroo M (2006). An intelligent early warning

system for software quality improvement and project management.
Journal of Systems and Software. 79(11): 1552-1564.

Mahaweerawat A, Sophatsathit P and Lursinsap C (2007). Adaptive
self-organizing map clustering for software fault prediction. In Fourth
International Joint Conference on Computer Science and Software
Engineering: 35-41.

Mair C, Kadoda G, Lefley M, Phalp K, Schofield C, Shepperd M and
Webster S (2000). An investigation of machine learning based
prediction systems. J. Systems and Software 53(1): 23-29.

Menzies T, Di Stefano JS and Chapman M (2003). Learning early
lifecycle IV & V quality indicators. In Proceedings of Ninth IEEE
International Software Metrics Symposium: 88 - 96.

Menzies T, Greenwald J and Frank A (2007). Data mining static code
attributes to learn defect predictors. IEEE Transactions on Software
Engineering 33(1): 2-13.

Mizuno O, Ikami S, Nakaichi S and Kikuno T (2007). Spam filter based
approach for finding fault-prone software modules. In Proceedings
of the Fourth International Workshop on Mining Software
Repositories: 4.

Mooney JG, Gurbaxani V and Kraemer KL (1996). A process oriented
framework for assessing the business value of information
technology. ACM SIGMIS Database 27(2): 68-81.

Morasca S and Ruhe G (1996). A comparative study of two techniques
for analyzing software measurement data. In Proceedings of Annual
Meeting, ISERN.

Munson JC and Khoshgoftaar TM (1990). Regression modelling of
software quality: empirical investigation. Information and Software
Technology 32(2):106-114.

Munson JC and Khoshgoftaar TM (1992). The detection of fault-prone
programs’, IEEE Transactions on Software Engineering 18(5): 423-
433.

Nagappan N, Williams L, Osborne J, Vouk M and Abrahamsson P
(2005). Providing test quality feedback using static source code and
automatic test suite metrics. In 16th IEEE International Symposium
on Software Reliability Engineering: 10-pp.

Nagwani NK and Verma S (2010). Predictive data mining model for
software bug estimation using average weighted similarity. In IEEE
2nd International Advance Computing Conference: 373-378.

Neil M (1992). Multivariate assessment of software products. J.
Software Testing, Verification and Reliability 1(4): 17-37.

Padberg F, Ragg T and Schoknecht R (2004). Using machine learning
for estimating the defect content after an inspection. IEEE
Transactions on Software Engineering 30(1): 17-28.

Pai GJ and Dugan JB (2007). Empirical analysis of software fault
content and fault proneness using Bayesian methods. IEEE
Transactions on Software Engineering 33(10): 675-686.

Parzinger MJ and Nath R (2000). A study of the relationships between
total quality management implementation factors and software
quality. Total Quality Management 11(3): 353-371.

Paulk MC (1993). Comparing ISO 9001 and the capability maturity
model for software. Software Quality J. 2(4): 245-256.

Pearson MJ, McCahon CS and Hihgtower RT (1995). Total quality
management: are information systems managers ready?
Information and Management 29(5): 251 – 263.

Phan DD, George JF and Vogel DR (1995). Managing software quality
in a very large development project. Information & management
29(5): 277-283.

Porter AA and Selby RW (1990) Evaluating techniques for generating
metric-based classification trees. Journal of Systems and Software
12(3): 209-218.

Pressman RS (2005). Software engineering: a practitioner's approach,
Palgrave Macmillan.

Rawashdeh A and Matalkah B (2006). A new software quality model for
evaluating COTS components. J. Comp. Sci. 2(4): 373-381.

Raymond ES (2001). The Cathedral & the Bazaar: Musings on linux
and open source by an accidental revolutionary, O'Reilly Media,
Inc.

Reformat M (2003). A fuzzy-based meta-model for reasoning about the
number of software defects. In Fuzzy Sets and Systems—IFSA

026 Merit Res. J. Bus. Manag.

2003: 644-651.
Reformat M, Pedrycz W And Pizzi NJ (2003). Software quality analysis

with the use of computational intelligence. Information and Software
Technology 45(7): 405-417.

Samson D And Terziovski M (1999). The relationship between Total
Quality Management practices and operational performance.
Journal of Operations Management 17(4): 393 – 409.

Sandhu PS, Kaur M and Kaur A (2010). A Density Based Clustering
approach for early detection of fault prone modules. In 2010 IEEE
International Conference on Electronics and Information
Engineering 2: V2-525.

Schneidewind N F (2001). Investigation of logistic regression as a
discriminant of software quality. In Proceedings of IEEE Seventh
International Software Metrics Symposium. 328-337.

Sedigh-Ali S, Ghafoor A and Paul R (2001). Metrics-guided quality
management for component-based software systems. In 25th IEEE
Annual International Computer Software and Applications
Conference: 303-308.

Shem S, Eddie L and Kellys S (2015). Assessing the role of standards
in enhancing the competitiveness of locally manufactured products
in Zambia. Merit Research J. Bus. Manag. 3(2): 16 – 28.

Sherriff M, Heckman SS, Lake M and Williams L (2007). Identifying
fault-prone files using static analysis alerts through singular value
decomposition. In Proceedings of the 2007 conference of the center
for advanced studies on Collaborative research: 276-279..

Shiffler G (2003). Gartner Dataquest Market Databook March 2003
Update, Gartner.

Sibisi M and Van Waveren CC (2007). A process framework for
customising software quality models. In Proceedings of the IEEE
AFRICON: 1-8.

Singh Y, Kaur A and Malhotra R (2008). Predicting software fault
proneness model using neural network. In Product-Focused
Software Process Improvement: 204-214. Springer Berlin
Heidelberg.

Song Q, Shepperd M, Cartwright M and Mair C (2006). Software defect
association mining and defect correction effort prediction. IEEE
Transactions on Software Engineering 32(2): 69-82.

Stamelos I, Angelis L, Oikonomou A and Bleris GL (2002). Code quality
analysis in open source software development. Information
Systems Journal 12(1): 43-60.

Subramanian GH, Jiang JJ and Klein G (2007). Software quality and IS
project performance improvements from software development
process maturity and IS implementation strategies. J. Systems and
Software 80(4): 616-627.

Succi G, Stefanovic M and Pedrycz W (2001). Advanced statistical
models for software data, Department of Electrical and Computer
Engineering, University of Alberta, Canada, http://www. unibz.
it/web4archiv/objects/pdf/cs_library/2/AdvancedStatisticalModelsfor
Softwaredata. pdf.

Suryn W, Abran A, and April A (2003). ISO/IEC SQuaRE the second

generation of standards for software product quality.
Tamura S (2009). Integrating CMMI and TSP/PSP: Using TSP Data to

Create Process Performance Models (No. CMU/SEI-2009-TN-033),
Carnegie-Mellon University, Software Engineering Institute,
Pittsburgh.

Tao W and Wei-hua L (2010). Naive bayes software defect prediction
model. In IEEE International Conference on Computational
Intelligence and Software Engineering: 1-4.

Team CP (2006). CMMI for Development, version 1.2.
Thwin MMT and Quah TS (2005). Application of neural networks for

software quality prediction using object-oriented metrics. Journal of
systems and software 76(2): 147-156.

Turhan B and Bener A (2007). A multivariate analysis of static code
attributes for defect prediction. In Seventh IEEE International
Conference on Quality Software: 231-237.

US General Accounting Office (1979). Contracting for computer
software development, FGMSD-80.4, Washington DC, USA.

Walrad C and Moss E (1993). Measurement: the key to application
development quality. IBM Systems Journal 32(3): 445-460.

Weber CV, Curtis B and Chrissis MB (1994). The capability maturity
model: Guidelines for improving the software process, Addison-
Wesley, Reading, MA.

Xu Z, Khoshgoftaar TM and Allen EB (2000). Prediction of software
faults using fuzzy nonlinear regression modeling. In Fifth IEEE
International Symposim on High Assurance Systems Engineering:
281-290.

Yang B, Yao L and Huang HZ (2007). Early software quality prediction
based on a fuzzy neural network model. In Third International
Conference on Natural Computation 1: 760-764.

Yang HY (2001). Software quality management and ISO 9000
implementation. Industrial Management & Data Systems
101(7):329-338.

Yang W and Li L (2008). A rough set model for software defect
prediction. In IEEE International Conference on Intelligent
Computation Technology and Automation 1: 747-751.

Yuan X, Khoshgoftaar TM, Allen EB and Ganesan K (2000). An
application of fuzzy clustering to software quality prediction. In
Proceedings of 3rd IEEE Symposium on Application-Specific
Systems and Software Engineering Technology: 85-90.

Zardony MA and Tumanic RE (1992). Zero-defects software: the total
quality management approach to software engineering. Chief
Information Officer J. 4(4): 10-16.

Zhu D and Wu Z (2009). The Application of Gray-Prediction Theory in
the Software Defects Management. In IEEE International
Conference on Computational Intelligence and Software
Engineering: 1-5.

Zimmerman LV (2001). Plan for training to ensure software quality.
AACE International Transactions: IT51.

