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Many organizations has been utilizing the benefits of information 
technology to gain competitive advantage in their respective businesses. As 
a result, the number of software development companies increased many 
folds during the last three decades. As the competition increased, the need 
for delivering good quality software within the committed schedule also 
increased. Even today many software companies have to deal with the 
consequences of delivering poor quality products, schedule and cost 
overrun problems. Many software quality and development frameworks have 
been suggested in the past to get rid of the aforementioned problems and a 
lot of research has been carried out in the field of software quality 
management and practices. In this paper, the authors provide a review of 
the major research works published in the field of software quality 
management. The study found that the research works in the software 
quality can be classified into five categories namely studies exploring the 
relationship between software quality and (i) total quality management 
implementation, (ii) adoption of quality management systems like ISO 9000 
series of standards, (iii) capability maturity model level, (iv) development of 
defect prediction models and (v) quality management and evaluation 
practices of specific categories of software development process. The 
authors also tried to identify the gaps in existing research and future areas 
of research in software quality management. 
 
Keywords: Capability maturity model, Defect prediction models, ISO 9000, 
Quantitative project management, Software quality, Total quality management

 
INTRODUCTION 
 
Surviving in a globalised business world is not easy 
unless the organizations have a competitive advantage 
(Kanji and Asher, 1999; Samason and Terziovski, 1999 
and Adam et al., 2001). During the past three decades, 
many organizations deploy information technology (IT) to 
gain the aforementioned competitive advantage. The IT 
industry has witnessed tremendous growth in the last 
three decades. The Gartner group estimated even a 
decade ago that the worldwide user spending on 
software exceeded $730 billion and that in the packaged 
software market topped $176 billion (Shiffler, 2003; IDC, 
2003). Many business organizations are using IT as a 
means to achieve operational efficiency, improved 

productivity and service quality and responsiveness 
(Mooney et al., 1996).  

As the demand for software products increased, the 
number of software development firms also increased. 
Even though the number of software development firms 
increased rapidly, delivering quality software products 
without cost and schedule overrun has been always a 
challenge in software industry (Pearson et al., 1995; 
Phan et al., 1995). A study by US General Accounting 
Office (1973) reported that many government software 
projects were never delivered or couldn’t be used and 
had cost over runs or schedule overruns. The breakup       
of  software  project  problems  (Osmundson et al., 2002) 
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Figure 1. Break up software projects with problems  

 
 
 
published by the study is given in figure 1. 

Many software firms has comprised on quality to meet 
the schedule pressure and control the development costs 
leading to detecting higher number of defects at customer 
end (Kemerer, 1997). The lack of quality had significant 
costs to the suppliers who face dissatisfied customers, 
loss of market share and rework of rejected systems 
(Sibisi and Waveren, 2007). Hence producing quality 
software within the committed time and cost are very 
important for the survival of software development 
organizations in the highly competitive information 
technology industry. 

Defining software quality is not easy and there is no 
single adequate measure for software quality. Fenton and 
Bieman (2014) suggested measuring software quality in 
terms of delivered defect density. The delivered defect 
density is the number of defects per unit size. According 
to ISO/IEC 9126 – 1, the software quality model has six 
characteristics namely functionality, reliability, usability, 
efficiency, maintainability and portability (Al-Kilidar et al., 
2005). ISO 9126 (1991) defined software quality as the 
totality of features and characteristics of a software 
product that bear on its ability to satisfy stated and 
implied needs of the customer. The widely adopted 
Capability Maturity Model (CMM) developed by Software 
Engineering Institute (SEI) of the Carnegie Mellon 
University classifies the software process into five 
maturity levels namely initial, repeatable, defined, 
managed and optimizing (Paulik et al., 1994). In short, 
there has been a variety of approaches and guidelines 
suggested for software quality management and 
improvement. 

The purpose of this paper is to review the literature on 
recent advances in software quality management and 

identify the major gaps in the research. The remaining 
part of the paper is organized as follows: The review 
methodology is described in section 2, the literature 
review analysis is given in section 3 and the conclusions 
and areas of future research are summarised in section 
4. 
 
 
REVIEW METHODOLOGY 
 
In the recent past numerous books have been written, 
papers have been published, conferences have been 
organised on various approaches for measuring and 
improving software quality and software quality 
management practices. The aim of this paper is to 
provide a comprehensive review on the recently 
published scientific literature on software quality 
management and related topics.  

The review process started with searching for relevant 
articles. The focus is on papers and books published in 
English from 1990 onwards. Only articles published in 
journals, books or presented in conferences are included 
in the review. The authors searched the popular research 
databases like ScienceDirect, ieee xplore, google scholar 
and researchgate using software quality, software quality 
management or software quality prediction as key words. 

Six hundred and twenty four articles suggested by the 
databases are identified for the survey. After going 
through the key words and abstracts, 196 articles were 
shortlisted for detailed study. Another 79 papers were 
also excluded after reading the full text as they were not 
directly related to the topics of interest.  The remaining 
117 articles were reviewed in this study. The details are 
given in figure 2. 
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Figure 2. Details of articles chosen for review 

 
 

Table 1. Category wise number of articles reviewed 
 

Number Category Number of Articles 

1 Total Quality Management 13 
2 Quality Management Systems 10 
3 Capability Maturity Model 11 
4 Quality Prediction Models 70 
5 Others 13 

 

The details of review analysis for each groups is as follows: 

 
 
Literature Review Analysis 
 
The authors carried out detailed analysis on the articles 
selected for the study and classified the articles into five 
different categories based on the topics of their research. 
The grouping had enabled the authors to summarise the 
findings and identify the future research areas. The 
number of papers reviewed under each category is given 
in table 1. 
 
 
Total Quality Management and Software Quality 
 
The universal acceptance of the TQM has inspired 
software firms to adopt it to their industry (Cortada, 1995, 
Alkhafaji et al., 1998; Bhattacharya et al., 1998).  
Parzinger and Nath (2000) studied the relationship 
between TQM implementation factors and various 
measures of software quality. The study showed that the 
TQM implementation factors have significant positive 
correlation (p value < 0.01) with the software quality 
measures except cost of quality (p value > 0.05).  

Li et al., (2000) suggested an approach to instil TQM 
method in software development process. Issac et al., 
(2004) proposed a holistic conceptual framework for 

implementation of TQM in software industry. The 
framework suggest to constantly measure the 
performance of the system using metrics, analyse with 
respect to the benchmarks set and provide feedbacks to 
the system to take necessary corrective steps. Carrol 
(1995; Camuoff et al., 1990) argued that the application 
of the key elements of TQM in software development has 
the potential to improve the software quality. Many 
researchers (Munson and Khoshgoftaar, 1992; Zardony 
and Tumanic, 1992; Gong et al., 1998) studied the 
application of TQM concepts like statistical quality control 
and quality function deployment on software quality. 
Walrad and Moss (1993) observed that the impact of 
TQM techniques on system quality depends on effective 
linking of product and process metrics to system quality 
objectives.  

Even though the research suggested positive 
correlation between TQM implementation and software 
quality, most of the works were on conceptual framework 
or empirical studies based on the analysis of survey data. 
 
 
Quality Management Systems and Software Quality 
 
The International Organization for  Standardization  (ISO) 



 
 
 
 
and International Electrotechnical Commission (IEC) has 
published two series of standards namely ISO/IEC 9126 
for software product quality and ISO/IEC 14598 for 
evaluation of software products (Suryn et al., 2003). The 
ISO/IEC 9126 standard suggested a quality model 
comprising of six characteristics and 27 sub 
characteristics of software product quality.  

Shem et al, (2015) showed that generally there exists 
positive correlation between implementation of standards 
and product quality.  Jung et al, (2004) conducted a 
survey among users of a packaged software product to 
evaluate the structure of the software quality model 
proposed in ISO /IEC 9126 – 1. The study revealed that 
ambiguities exist in the way that ISO/IEC 9126 is 
structured and the sub characteristics categorization isn’t 
consistent with the ISO/IEC 9126 definition. Balla et al., 
(2001) published a case study on the success of ISO 
certification in a software company in Hungary. According 
to the study, working in conformance with QMS caused 
about 30% of extra effort in small projects and about 10 – 
20 % in bigger projects. But the advantages were 
perceived to outweigh the costs. Yang (2001) studied the 
attributes of the software quality given in ISO 9000 
standard and its usefulness in estimating the software 
product quality. Paulk (1993) observed that there exists 
strong correlation between ISO 9000 standard and CMM 
frame work. Franch and Carvallo (2003) developed a 
quality model for choosing off the shelf software 
packages based on ISO / IEC 9126 – 1 standard. Coallier 
(1994) explored the fitment of ISO 9000 standards for 
software development process. The study found that ISO 
9001 / 9000 – 3 only partially supports the assets needed 
to deliver the software when it is required with minimum 
life cycle costs. Al – Kilidar et al., (2005) reported an 
empirical study on application of ISO / IEC 9126 to 
software design documents and found that the standard 
has ambiguity and overlap in some concept definitions, 
doesn’t consider reliability and maintainability as well as 
validity and modularity of design products. Jenner (1995) 
showed how ISO 9001 can be used for software 
development process. 

The review of the literature had thrown out conflicting 
findings. While many of the studies suggested 
improvement in quality with the implementation of quality 
management systems or standards, there were studies 
disagreeing with the aforementioned conclusion. 
Unfortunately most of the papers were empirical studies 
based on survey data. 
 
 
Capability Maturity Model and Software Quality 
 
The capability maturity model (CMM) developed by the 
software engineering institute (SEI) of Carnegie Mellon 
University is one of the widely accepted framework for 
characterising the capability of software development 
processes (Pressman, 2005).  
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Harter et al., (2000) empirically investigated the 
relationship between process maturity measured in CMM 
maturity scale, product quality, development cycle time 
and effort. The study found that 1% improvement in 
process maturity is associated with a 1.589% increase in 
product quality. The other findings of the study are higher 
the quality, lower is the cycle time and development 
effort. Herbsleb et al., (1997) also showed that CMM 
levels influence the software quality and project 
performance variables. Zimmerman (2001) suggested 
that poor planning and lack of training are two root 
causes of software project failure. Many other studies 
also showed that higher CMM levels are associated with 
improved software quality (Zimmerman, 2001; Lawlis et 
al., 1995; Krishnan, 1996; Subramanian et al., 2007).  

But Hansen et al., (2004) pointed out that the 
evidence for higher CMM levels are associated with 
higher quality are limited and not based on reflective 
models. 

Higher maturity levels (level 4 and 5) of capability 
maturity model requires the quantitative management of 
the process (C P Team, 2006), which means the process 
need to be controlled by statistical and other quantitative 
techniques. Tamura (2009) developed three process 
performance models using regression techniques, one for 
achieving product quality objectives (defect density) by 
controlling requirement inspection rate (pages per hour) 
and prototype developed or not. The second one for 
achieving code review yield (% of defects present in the 
software that are removed by the review) targets by 
controlling review rate (the number of lines of code 
reviewed per hour). The third model is to manage the 
escaped unit test defect density using test coverage as 
controllable variable. Hao and Zhang (2011) also 
developed a model for delivered defect density in terms 
of average team skill level and test coverage as 
controllable variables. 

Majority of the papers suggested that higher maturity 
levels were attached with better software quality.  Except 
the research on developing process performance models, 
the remaining articles were mostly based on empirical 
evidence.  
 
 
Development of Defect Prediction Models  
 
From 1970s onwards one major area of research in 
software quality has been the development of defect 
prediction or classification models. The important papers 
published on defect prediction models from 1990s 
onwards along with the methodology used is summarised 
in table 2.  

The breakup of different techniques used to develop 
the prediction models is given in figure 3. Most of the 
models used static code attributes like code complexity, 
etc as predictors those are not routinely measured by       
the project managers and may not be under their  control.  
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Table 2. Research on developing defect prediction models 
 

SL No Methodology Details 

1. Regression Analysis Regression with different intercepts and slopes (Nagappan et al, 2005), Logistic 
regression (Khoshgoftaar and Allen 1999; Cruz and Ochimizu 2009), Zero-inflated 
negative binomial regression (Succi et al., 2001), Zero – inflated Poisson regression 
(Khoshgoftaar, 2001), Regression via classification (Bibi et al., 2006), Linear mixed-
effects regression models (Binkley, 2007) 

2 Multivariate Analysis Factor analysis (Khoshgoftaar and Munson, 1990; Munson and Khoshgoftaar, 
1990), Principal component analysis (Niel, 1992; 
John and Kadadevaramath, 2014), Discriminant analysis (Schneidewind, 2001; 
Khoshgoftaar and Seliya, 2002)), Cluster Analysis (Sandhu et al., 2010), Singular 
value decomposition (Sherriff et al., 2007) 

3 Machine learning 
techniques 

Neural Networks (Khoshgoftaar et al., 1995; Khoshgoftaar et al., 1997; Mair et al., 
2000; Kanmani et al., 2004; Pedberg et al., 2004; Thwin, and Quah, 2005; Bezerra 
et al., 2007; Kanmani et al., 2007; Singh et al., 2008;Tao and Wei-hua, 2010), 
Bayesian Networks (Fenton and Niel, 1999; Amazaki et al., 2003; Fenton et al., 
2007, Menzies et al., 2007,Pai and Dugan, 2007; Turhan and Bener, 2007; John, 
2012), Classification and Regression Tree (Porter and Selby, 1990; Khoshgoftaar et 
al., 1999; Koru and Liu, 2005; Menzies et al., 2003; Khoshgoftaar and Seliya, 
2003b; Khoshgoftaar and Seliya, 2002; Knab et al., 2006; Ceylan et al., 2006), 
Random Forest (Guo et al., 2004; Kaur and Malhotra, 2008), Rough Sets (Morasca 
and Ruhi, 1996; Yang and Li, 2008), Instance based  learning (Ganesan et al., 
2000; Emam et al., 2001; Khoshgoftaar and Seliya, 2003a; Khoshgoftaar et 
al.,2006; Challagulla et al., 2006), Support Vector Machines (Elish and Elish,  
2008), Self Organizing Maps (Reformat et al., 2003; Mahaweerawat et al., 2007), 
Genetic Programming (Afzal and Torkar, 2008; Afzal et al., 2008), Particle Swarm 
Optimization (De Carvalho et al., 2008; Cong et al., 2010; De Carvalho et al., 2010), 
Grey Prediction Theory (Zhu and Wu, 2009), Dempster-Shafer Belief Networks 
(Guo et al., 2003), Fuzzy Logic (Xu et al., 2000; Yuan et al., 2000; Reformat, 2003; 
Yang et al., 2007; Hribar and Duka, 2010), Recency Weighting Technique (Joshi et 
al., 2007), Spam Filter Approach (Mizuno et al., 2007), Weighted Similarity 
Modelling (Nagwani and Verma, 2010), Association Rule Mining (Song et al., 2006) 

 
 

 
 

Figure 3. Breakup of different algorithms used to develop used in fault prediction models 

 
 

Moreover software quality depends on people related 
factors like programmer skills, level of expertise, domain 
knowledge, etc (Antony and Fergusson, 2004). Hence 
the process performance models developed as per the 

guidelines of CMM frame work would be more useful for 
quantitatively managing the software development 
process. 
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Table 3. Management and evaluation practices of specific categories of software development 
 

SL No. Details 

1 Comparison of quality of the software developed by  distributed teams and collocated teams (Bird 
et al., 2009) 

2 Development of  metric based approach and software engineering metrics to ensure the quality of 
systems developed using commercial off the shelf components (COTS) (Sedigh-Ali et al., 2001; 
Rawashdeh and Matalkah, 2006) 

3 Comparison of quality of software as a service (offering software using a subscription model) with  
software offered using perpetual licensing model (Choudhary, 2007) 

4 Comparison of quality of open source applications  with that of commercially developed software 
(Stamelos et al., 2002; Raymond, 2001; Aberdour, 2007) 

5 Application of quality function deployment (QFD) on improving software quality (Liu, 2000; Islam 
and Hasin, 2014) 

6 Application of fuzzy logic on quality improvement (Liu et al., 2006), effect of project management 
policies on software quality (Garcia et al., 2008), effect of various software process improvement 
(SPI) methodologies on software quality (Ashrafi, 2003) 

 
 
 
Management and evaluation practices of specific 
categories of software development process  
 
Apart from studying the effect or TQM, ISO, CMM and 
defect prediction modelling on software quality, lot of 
research has also been carried out in the field of 
management and evaluation practices of specific 
categories of software development process. The 
important among them are summarized in table 3. 
 
 
CONCLUSION AND FUTURE RESEARCH WORK 
 
The paper presented a literature review on software 
quality management practices. The review revealed that 
the important articles published recently can be classified 
into five groups namely those studying the impact of (i) 
TQM implementation on software quality, (ii) ISO 9000 
certification on software quality, (iii) adoption of CMM 
framework on software quality, (iv) development of 
software quality prediction models and (v) Management 
and evaluation practices of specific categories of 
software development process. 

The published articles suggested that there is positive 
correlation between TQM implementation and software 
quality as well as CMM frame work and software quality. 
These studies are carried out using empirical data 
collected through survey. The future researchers can fine 
tune these findings through correlating quantitative 
measures of software quality with that of TQM, ISO, 
CMM implementation. The researchers can also establish 
the correct relationship between ISO certification and 
software quality as the past studies showed that ISO 
certification has conflicting results.  

A lot of research has been carried out on developing 
software quality prediction models to either predict the 
software faults or classify software modules as fault 
prone or not. Some of the drawbacks of these models are 
as follows: There is no one best model suitable for all 

types of software development. In fact the research on 
comparison of these models suggested that different 
models need to use for different type of scenarios. 
Moreover majority of these models use static code 
attributes like code complexity, etc as predictors. Many of 
these factors are not routinely measured by the project 
managers and also many of these factors may not be 
under the control of project managers. Most of these 
models used data available in the public domain like 
NASA website, etc. The research on developing fault 
prediction models using industry data are still in the 
nascent stage. The review showed that process 
performance models developed under the quantitative 
project management process area of CMM framework 
are more suitable for quantitatively manage the software 
development process. But these models are mostly 
based on regression or simulation techniques. The 
development of process performance models using 
different algorithms, especially the machine learning 
algorithms will be an important area of future research. 
Moreover the review showed that there is good 
correlation exit between software quality, productivity, 
cycle time, and development effort. Hence it is required to 
develop models or methodologies to quantitatively 
manage multiple performance characteristics 
simultaneously. Moreover many of the performance 
characteristics are qualitative. Hence the models for 
simultaneously monitoring of quantitative and qualitative 
performance characteristics will be another important 
area of future research.  
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