Obestatin and Copeptin Levels in Egyptian Polycystic Ovary Patients and their Relation to Obesity, Insulin Resistance and Cardiovascular Risk

Abeer I. Abd El-Fattah, Adel A. Elboghdady, Mahmoud M. Kamel* and Elfeshawy S. Mohamed

Abstract

The aim of this study is to investigate the correlations between the serum levels of obestatin and copeptin, carotid artery intima-media thickness (CIMT), and brachial artery flow mediated dilatation (FMD) in obese and non-obese women with PCOS. Secondly, to investigate their relationship with each other and with clinical, metabolic, hormonal parameters and cardiovascular risk factors. We analyzed 54 patients with PCOS and 20 age-matched healthy women as controls. PCOS patients were divided into two groups based on body mass index (BMI): obese group (BMI > 30 kg/m², n = 28) and non-obese group (BMI < 30 kg/m², n = 26). Serum copeptin and obestatin levels, insulin homeostasis model assessment for insulin resistance (HOMA-IR), CIMT and brachial artery FMD were determined and compared among the groups. Women with PCOS, especially obese ones, had higher triglycerides, HOMA-IR, hirsutism score, total testosterone, CRP, systolic and diastolic blood pressure, and waist-to-hip ratio (WHR), and lower HDL. Serum obestatin levels were significantly lower in obese PCOS group than non-obese and control. While serum copeptin levels were significantly higher in obese PCOS group than non-obese and control. Brachial artery FMD was lower in the PCOS groups than control. Obestatin was positively correlated with cardiovascular risk factor (FMD), whereas copeptin was negatively correlated with FMD. Obestatin and copeptin may provide useful information regarding future cardiovascular risk in PCOS patients as obestatin was negatively correlated and copeptin was positively correlated with cardiovascular risk factor (FMD).

Keywords: Cardiovascular Risk, Copeptin, Insulin resistance, Obesity, Obestatin, Polycystic ovary

INTRODUCTION

The polycystic ovary syndrome (PCOS) is a hyperandrogenic disorder associated with chronic oligo-anovulation, polycystic ovarian morphology, hyperandrogenism, menstrual disturbance, anovulation, infertility and obesity (Azziz et al., 2006; Pasquali et al., 2006), and also associated with an increased number of cardiovascular risk factors (Orio et al., 2004), and early atherosclerosis (Kelly et al., 2001; Kelly et al., 2002). Hyperinsulinism and insulin resistance are frequent findings in PCOS patients, and these traits have cause-consequence relationships with low-grade chronic inflammation (Escobar-Morreale et al., 2005), and increased cardiovascular disease risk (Legro, 2003).

Obestatin is peptide hormone secreted by the cells of the stomach and small intestine of several mammals including humans. Although obestatin and ghrelin are both
The body mass index (BMI) – atients with (BMI) was calculated as weight (in kilograms)/height squared (meters squared). The BMI, WHR, and hirsutism scores were assessed by the same physician.

Laboratory Investigations

Sampling

A sample of 10 ml venous blood was collected from each subject after an overnight fasting. The venous blood sample was divided into two test tubes. 1ml was added to a mixture of potassium oxalate and sodium fluoride (for plasma fasting glucose estimation (FBG) by oxidase/peroxidase kit) according to the principle of Caraway and Watts (1987) and the remaining 9 ml were allowed to clot at room temperature then centrifuged at 1000 rpm for 15 minutes. Serum was separated and divided into aliquots then frozen at -20 °C till the time of assay. The serum samples were used to estimate the following parameters:

Specific laboratory tests

1- Determination of serum obestatin was measured by a solid phase enzyme linked immunosorbent assay (ELISA) technique. The kit supplied by ALPCO DIAGNOSTICS, Catalog Number: 48-OBEHU-E01, Inc.; according to the principle of Zhang et al. (2005)

2- Determination of serum copeptin was determined with a sandwich ELISA technique using Phoenix Pharmaceuticals, Inc: USA, according to the principle of Polstermann and Kiessig (1992).

3- Determination of Total testosterone was measured by the solid phase enzyme immunoassay (ELISA Kit), according to the principle of Marcus and Durnford, (1985).

4- Determination of serum CRP was measured using the Monobind Inc: USA (Ridker et al., 1998).

5- Determination of serum Insulin: by a solid phase enzyme linked immunosorbent assay (ELISA) Kit (Andersen et al., 1993)

Routine laboratory investigations

They include estimation of serum Triglycerides: by enzymatic colorimetric kit (Fossati and Principe, 1982). Total cholesterol: by enzymatic colorimetric kit (Allain et al., 1974). HDL-cholesterol: by phosphotungstate precipitation kit (Lopes-Virella et al., 1977). LDL-choles-
Table 1. Clinical characteristics and biochemical data of all studied groups.

<table>
<thead>
<tr>
<th></th>
<th>Obese Mean ± SD</th>
<th>Non obese Mean ± SD</th>
<th>Control Mean ± SD</th>
<th>I vs. II LSD</th>
<th>I vs. III LSD</th>
<th>II vs. III LSD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age years</td>
<td>24.03 ± 2.61</td>
<td>23.23 ± 2.45</td>
<td>23.75 ± 2.77</td>
<td>0.235</td>
<td>0.706</td>
<td>0.491</td>
</tr>
<tr>
<td>DM</td>
<td>5 (16.67%)</td>
<td>4 (13.33%)</td>
<td>0 (0.0%)</td>
<td>0.485</td>
<td>0.097</td>
<td>0.092</td>
</tr>
<tr>
<td>CVD</td>
<td>7 (23.33%)</td>
<td>5 (16.67%)</td>
<td>0 (0.0%)</td>
<td>0.522</td>
<td>0.063</td>
<td>0.070</td>
</tr>
<tr>
<td>BMI Kg/m2</td>
<td>37.25 ± 1.16</td>
<td>37.69 ± 1.18</td>
<td>37.54 ± 1.34</td>
<td><0.001</td>
<td><0.001</td>
<td><0.001</td>
</tr>
<tr>
<td>WHR</td>
<td>0.76 ± 0.07</td>
<td>0.69 ± 0.05</td>
<td>0.69 ± 0.06</td>
<td><0.001</td>
<td><0.001</td>
<td><0.001</td>
</tr>
<tr>
<td>Hirsutism score</td>
<td>6.27 ± 1.80</td>
<td>5.63 ± 2.14</td>
<td>2.10 ± 1.02</td>
<td>0.174</td>
<td><0.001</td>
<td><0.001</td>
</tr>
<tr>
<td>SBP mmHg</td>
<td>132.67 ± 17.99</td>
<td>122.67 ± 12.85</td>
<td>99.50 ± 9.99</td>
<td><0.001</td>
<td><0.001</td>
<td><0.001</td>
</tr>
<tr>
<td>DBP mmHg</td>
<td>81.00 ± 10.94</td>
<td>73.33 ± 8.84</td>
<td>63.50 ± 8.75</td>
<td><0.003</td>
<td><0.001</td>
<td><0.001</td>
</tr>
<tr>
<td>Total Testosterone ng/dl</td>
<td>1.25 ± 0.94</td>
<td>1.12 ± 0.90</td>
<td>0.12 ± 0.05</td>
<td>0.042</td>
<td><0.001</td>
<td><0.001</td>
</tr>
<tr>
<td>Total Chol. mg/dl</td>
<td>168.44 ± 18.70</td>
<td>164.70 ± 13.03</td>
<td>159.44 ± 15.81</td>
<td>0.369</td>
<td>0.056</td>
<td>0.260</td>
</tr>
<tr>
<td>LDL mg/dl</td>
<td>84.86 ± 11.62</td>
<td>83.05 ± 11.18</td>
<td>79.73 ± 12.46</td>
<td>0.550</td>
<td>0.132</td>
<td>0.329</td>
</tr>
<tr>
<td>HDL mg/dl</td>
<td>35.33 ± 3.91</td>
<td>49.79 ± 4.20</td>
<td>47.72 ± 5.39</td>
<td><0.001</td>
<td><0.001</td>
<td>0.109</td>
</tr>
<tr>
<td>TG mg/dl</td>
<td>241.17 ± 40.97</td>
<td>159.12 ± 4.72</td>
<td>158.77 ± 4.25</td>
<td><0.001</td>
<td><0.001</td>
<td>0.962</td>
</tr>
<tr>
<td>CRP</td>
<td>6.47 ± 3.64</td>
<td>4.40 ± 2.70</td>
<td>1.46 ± 0.99</td>
<td>0.027</td>
<td><0.001</td>
<td>0.003</td>
</tr>
<tr>
<td>FBG mmol/L</td>
<td>4.58 ± 0.77</td>
<td>3.21 ± 1.27</td>
<td>2.91 ± 0.74</td>
<td><0.001</td>
<td><0.001</td>
<td>0.298</td>
</tr>
<tr>
<td>Insulin IU/ml</td>
<td>8.55 ± 0.88</td>
<td>6.91 ± 0.96</td>
<td>6.54 ± 0.91</td>
<td><0.001</td>
<td><0.001</td>
<td>0.171</td>
</tr>
<tr>
<td>HOMA-IR</td>
<td>1.72 ± 0.32</td>
<td>0.97 ± 0.43</td>
<td>0.86 ± 0.21</td>
<td><0.001</td>
<td><0.001</td>
<td>0.245</td>
</tr>
</tbody>
</table>

Cholesterol was estimated by the equation of Friedewald et al. (1972) with triglyceride < 393 mg/dl.

LDL-Cholesterol = Total cholesterol - (triglyceride/5 + HDL-Cholesterol).

Insulin resistance was estimated by Homeostasis Model Assessment [25].

HOMA-IR = [fasting insulin (μU/ml) X fasting glucose (mmol/L)]/22.5

III-Measurement of carotid artery intima-media thickness and brachial artery flow-mediated vasodilation

The determination of endothelial dysfunction was performed according to Celermajer et al. [26]. Measurements were made by a single observer using an ATL 5000 ultrasound system (Advanced Technology Laboratories Inc., Bothell, Wash., USA) with a 12-MHz probe.

The maximum flow-mediated dilatation (FMD) diameters were calculated as the average of the 3 consecutive maximum diameter measurements. The FMD was then calculated as the percent change in diameter compared with baseline resting diameters. All patients were blindly examined by 1 experienced operator (Levy et al., 1988).

Carotid intima-media thickness (CIMT) is measured at 1 cm proximal to the bifurcation on each side as previously described. Carotid atherosclerosis is described as having a CIMT greater than 0.8 mm and/or a carotid plaque with protrusion into the vascular lumen 1-1.3 mm (Pignoli et al., 1986).

Statistical Method

Data were analyzed using Statistical Program for Social Science (SPSS) version 20.0. Quantitative data were expressed as mean± standard deviation (SD). Qualitative data were expressed as frequency and percentage. A one-way analysis of variance (ANOVA) when comparing between more than two means. Post Hoc test was used for multiple comparisons between different variables. Chi-square (X2) test of significance was used in order to compare proportions between two qualitative parameters. Pearson’s correlation coefficient (r) test was used for correlating data. Probability (P-value) < 0.05 was considered significant.

RESULTS

The distribution frequency % of history of diabetes mellitus (DM) and CVD in PCOS patients showed no difference between obese and non-obese ones.

BMI and WHR were significantly increased in obese PCOS patients when compared to both control and non-obese ones. Hirsutism score was significantly increased in PCOS patients when compared to controls. SBP, DBP, total testosterone and CRP were higher in the PCOS patients especially obese group than in the control group.

Regarding lipid profile, TG was significantly increased in obese PCOS patients when compared to both control and non-obese ones. While HDL cholesterol was significantly decreased in obese PCOS patients when compared to both control and non-obese ones. FMD%
was significantly decreased in PCOS patients when compared to controls. CIMT showed no difference between all groups (Table 2).

Obestatin was negatively correlated with BMI, WHR, total cholesterol, CRP, serum insulin and HOMA-IR in PCOS patients.

On the other hand, there was a significant positive correlation between obestatin levels and FMD in PCOS patients.

Regarding copeptin, there was a significant positive correlation between copeptin and total cholesterol, triglycerides, LDL, blood pressure, BMI, WHR, hirsutism score, total testosterone, CRP and HOMA-IR in PCOS patients (Table 3).

Additionally, there was a significant negative correlation between copeptin levels and cardiovascular risk marker (FMD) and HDL-c in PCOS patients (Table 3).

DISCUSSION

Polycystic ovaries (PCO) are the morphological ovarian phenotype in women with the polycystic ovary syndrome (PCOS). Several studies have been performed to attempt to determine the prevalence of PCO as detected by ultrasound alone in the general population, and have found prevalence rates in the order of 17–33% (Renato et al., 2011).

It is the first study to our knowledge, which correlates the serum levels of both obestatin and copeptin with obesity, insulin resistance and cardiovascular risk in polycystic ovary in Egypt, through the estimation of the serum levels of obestatin and copeptin, carotid artery intima-media thickness, brachial artery flow mediated dilatation and other metabolic and hormonal parameters in obese and non-obese women with PCOS and age-matched healthy controls.

In the present study, the obese women with PCOS have a significantly higher level of triglycerides, HOMA-IR, total testosterone, hirsutism score, CRP, blood pressure and WHR values and lower LDH levels when compared to control and non-obese ones.

In accordance with these results, Giallauria et al. (2008) reported that PCOS women represent an intriguing biological model illustrating the relationship between hormonal pattern and cardiovascular risk profile, presenting a cluster of cardiovascular features, such as obesity, insulin resistance, hypertension, impaired cardiopulmonary functional capacity, autonomic dysfunction and low-grade chronic inflammation.

Table 2. Comparison between all studied groups according to serum obestatin and copeptin levels, CIMT, and FMD.

<table>
<thead>
<tr>
<th></th>
<th>Obese Mean ±SD</th>
<th>Non-obese Mean ±SD</th>
<th>Control Mean ±SD</th>
<th>I vs. II p</th>
<th>I vs. III p</th>
<th>II vs. III p</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIMT mm</td>
<td>0.30 ± 0.01</td>
<td>0.30 ± 0.01</td>
<td>0.30 ± 0.01</td>
<td>0.468</td>
<td>0.132</td>
<td>0.387</td>
</tr>
<tr>
<td>Obestatin Pg/ml</td>
<td>2.25 ± 1.03</td>
<td>4.74 ± 3.48</td>
<td>6.97 ± 5.31</td>
<td>0.014</td>
<td><0.001</td>
<td>0.047</td>
</tr>
<tr>
<td>Copeptinn g/ml</td>
<td>6.65 ± 2.29</td>
<td>5.22 ± 2.12</td>
<td>3.35 ± 1.31</td>
<td>0.016</td>
<td><0.001</td>
<td>0.002</td>
</tr>
<tr>
<td>FMD %</td>
<td>15.13 ± 0.95</td>
<td>14.86 ± 0.91</td>
<td>18.03 ± 3.61</td>
<td>0.601</td>
<td><0.001</td>
<td><0.001</td>
</tr>
</tbody>
</table>

Table 3. Correlation between copeptin, obestatin, CIMT, FMD and all studied parameters in PCOS patients.

<table>
<thead>
<tr>
<th></th>
<th>CIMT mm R</th>
<th>p-value</th>
<th>Obestatin Pg/ml R</th>
<th>p-value</th>
<th>Copeptinn g/ml R</th>
<th>p-value</th>
<th>FMD % R</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obestatin Pg/ml</td>
<td>-0.057</td>
<td>0.766</td>
<td>-0.064</td>
<td>0.702</td>
<td>-0.011</td>
<td>0.954</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Copeptinn g/ml</td>
<td>-0.064</td>
<td>0.738</td>
<td>-0.073</td>
<td>0.702</td>
<td>0.072</td>
<td>0.706</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FMD %</td>
<td>-0.011</td>
<td>0.954</td>
<td>-0.013</td>
<td>0.924</td>
<td>0.005</td>
<td>0.463</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age years</td>
<td>-0.285</td>
<td>0.127</td>
<td>-0.317</td>
<td>0.088</td>
<td>-0.009</td>
<td>0.636</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMI Kg/m2</td>
<td>0.181</td>
<td>0.338</td>
<td>-0.368</td>
<td>0.004</td>
<td>0.042</td>
<td>0.903</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WHR</td>
<td>-0.135</td>
<td>0.478</td>
<td>-0.334</td>
<td>0.036</td>
<td>0.042</td>
<td>0.055</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hirsutism score</td>
<td>0.054</td>
<td>0.779</td>
<td>0.086</td>
<td>0.652</td>
<td>0.020</td>
<td>0.241</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SBP mmHg</td>
<td>0.001</td>
<td>0.995</td>
<td>-0.217</td>
<td>0.325</td>
<td>0.047</td>
<td>0.128</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DBP mmHg</td>
<td>0.026</td>
<td>0.692</td>
<td>-0.287</td>
<td>0.124</td>
<td>0.028</td>
<td>0.119</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Testosterone ng/dl</td>
<td>-0.094</td>
<td>0.622</td>
<td>0.257</td>
<td>0.170</td>
<td>0.013</td>
<td>0.259</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Chol. mg/dl</td>
<td>0.064</td>
<td>0.738</td>
<td>-0.488</td>
<td>0.025</td>
<td>0.079</td>
<td>0.677</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LDL mg/dl</td>
<td>0.097</td>
<td>0.609</td>
<td>0.156</td>
<td>0.410</td>
<td>0.005</td>
<td>0.030</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HDL mg/dl</td>
<td>0.052</td>
<td>0.785</td>
<td>0.124</td>
<td>0.516</td>
<td><0.001</td>
<td>0.081</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TG mg/dl</td>
<td>-0.017</td>
<td>0.927</td>
<td>0.307</td>
<td>0.099</td>
<td>0.033</td>
<td>0.176</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CRP</td>
<td>-0.024</td>
<td>0.899</td>
<td>-0.432</td>
<td>0.021</td>
<td>0.007</td>
<td>0.388</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FBG mmol/L</td>
<td>-0.036</td>
<td>0.851</td>
<td>-0.252</td>
<td>0.052</td>
<td>0.003</td>
<td>0.218</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insulin IU/ml</td>
<td>0.047</td>
<td>0.805</td>
<td>0.381</td>
<td>0.003</td>
<td>0.016</td>
<td>0.932</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HOMA-IR</td>
<td>0.018</td>
<td>0.924</td>
<td>-0.321</td>
<td>0.012</td>
<td><0.001</td>
<td>-0.159</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
(Giallauria et al., 2008). Several studies suggested that PCOS is frequently associated with various patterns of dyslipidemia including low high density lipoprotein cholesterol (HDL-C), high levels of triglycerides, total cholesterol, and low-density lipoprotein cholesterol (LDL-C) (Wild et al., 1985; Talbott et al., 1998; Ehrmann et al., 2006).

Obestatin was first described as a bioactive peptide encoded by the same gene as ghrelin, playing a role in reducing food intake, body weight gain, and gastric emptying and suppressing intestinal motility and regulation of hormone secretion (Tang et al., 2008).

In the current study, the serum levels of obestatin were significantly lower in PCOS group, especially in obese ones than control group. This finding was in accordance with other studies in humans have shown that plasma obestatin is significantly lower in obese subjects as compared to lean controls, indicating a role for obestatin in long-term body weight regulation (Ren et al., 2009). Additionally, concluded that obestatin and ghrelin in normal weight groups were significantly higher than they were in obese groups. All these findings potentiate the hypothesis that the increased obesity rates in PCOS may be attributed to low obestatin levels. Therefore, low obestatin levels may predict the underlying factor of obesity in PCOS patients.

Regarding the possibility of using obestatin for cardiovascular risk assessment in PCOS, the present study showed that there was a significant positive correlation between obestatin levels and cardiovascular risk markers (FMD) in PCOS patients. This in accordance with Taskin et al. (2015) who found that obestatin is correlated with FMD and may be used for cardiovascular risk assessment in PCOS.

In the current study, obestatin was also negatively correlated with CRP in PCOS patients. This result came in agreement with Taskin et al. (2015) who suggested that low obestatin levels may reflect low grade chronic inflammation in PCOS.

PCOS is associated with oxidative stress, namely increased production of free radicals followed by decreased serum antioxidant levels and antioxidant enzyme activity. It is thought that metabolic dysfunction like obesity, hyperinsulinemia, and dyslipidemia might be responsible for PCOS-associated oxidative stress (Macut et al., 2013).

Since antioxidant effects of obestatin have been recently approved (Koc et al., 2014). Therefore, we would expect an association between obestatin and dyslipidemia and insulin resistance. In our study, obestatin was also negatively correlated with total cholesterol and HOMA-IR in PCOS patients. This finding potentiates the hypothesis that decreased obestatin levels in PCOS, as an antioxidant, may contribute to increased oxidative stress in PCOS patients (Taskin et al., 2015).

Copeptin is a marker of vasopressin level that reflects the individual stress level because of its hemodynamic and osmoregulatory effects. In the present study, the serum levels of copeptin were significantly higher in PCOS group, especially in obese ones than control group. This finding was in accordance with Karbek et al. (2014) and Taskin et al. (2015).

In relation to the association between copeptin levels, insulin resistance and metabolic syndrome, the present study demonstrated that there was a significant positive correlation between copeptin and total cholesterol, triglycerides, LDL, blood pressure, BMI and HOMA-IR in PCOS patients. These findings came in agreement with several studies which assumed that stress mediated hypothalamic pituitary adrenal axis activation, regulated by copeptin, was found to have a role in the pathophysiology of insulin resistance and metabolic syndrome (Saleem et al., 2009; Enhornling et al., 2013). Additionally, Tenderenda-Banasiuk et al. (2014) reported that higher serum copeptin levels are associated with systolic and diastolic blood pressure and several components of metabolic syndrome including obesity, elevated triglycerides.

Since copeptin is a neurohormon (NH) of the Arginine vasopressin AVP system (Voors et al., 2009), we would expect the possibility of using copeptin for cardiovascular risk assessment in PCOS, the present study showed that there was a significant negative correlation between copeptin levels and cardiovascular risk markers (FMD) in PCOS patients. This in accordance with recent studies showed that copeptin was elevated in acute myocardial infarction (AMI) and resulted in better diagnostic performance when assessed in combination with cardiac troponin, particularly during the first hour after onset of symptoms (Reichlin et al., 2009; Keller et al., 2010; Gu et al., 2011) and Taskin et al. (2015) observed PCOS patients had higher copeptin levels and these elevated copeptin levels are associated with increased cardiovascular risk in PCOS.

These previous studies revealed that copeptin is not only a marker of cardiovascular diseases, but of other conditions as well. Potential links of copeptin with DM, metabolic syndrome (MetS) and microalbuminuria have drawn particular interest in the recent years. The AVP system has also been suggested to contribute to insulin resistance and DM potentially through a variety of mechanisms including stimulation of glucagon and ACTH secretion and glycogenolysis (Enhörning et al., 2010). Therefore, copeptin, as a surrogate marker of this system, might also be associated with disrupted glucose homeostasis: a recent study demonstrated that increased copeptin levels were found to be associated with insulin resistance (p < 0.001) in a large population of 4742 subjects (cross-sectionally) (Enhörning et al., 2010). Consistent with this, copeptin was also reported to have a cross-sectional association with metabolic syndrome in a large population of subjects (Enhörning et al., 2011; Enhörning et al., 2013).
CONCLUSION

Obestatin and copeptin may be regarded as promising markers of cardiometabolic risk as well as additional guide in the early identification of PCOS patients at risk for cardiovascular disease. The present study concluded also that insulin resistance and obesity are associated with both serum obestatin and copeptin levels, hence they appeared to have an important role in metabolic response and subsequent development of atherosclerosis in insulin resistant, obese, hyperandrogenemic PCOS patients.

Conflicts of Interest

All Authors disclose no conflict of interest.

REFERENCES

Azziz R, Carmina E, Dewailly, E, Legro RS, Norman RJ, Taylor AE, -

Macut J, Savic´ -

Obestatin and copeptin may be regarded as promising markers of cardiometabolic risk as well as additional guide in the early identification of PCOS patients at risk for cardiovascular disease. The present study concluded also that insulin resistance and obesity are associated with both serum obestatin and copeptin levels, hence they appeared to have an important role in metabolic response and subsequent development of atherosclerosis in insulin resistant, obese, hyperandrogenemic PCOS patients.

All Authors disclose no conflict of interest.

REFERENCES

Azziz R, Carmina E, Dewailly, E, Legro RS, Norman RJ, Taylor AE, -

Macut J, Savic´ -

Obestatin and copeptin may be regarded as promising markers of cardiometabolic risk as well as additional guide in the early identification of PCOS patients at risk for cardiovascular disease. The present study concluded also that insulin resistance and obesity are associated with both serum obestatin and copeptin levels, hence they appeared to have an important role in metabolic response and subsequent development of atherosclerosis in insulin resistant, obese, hyperandrogenemic PCOS patients.

All Authors disclose no conflict of interest.
Renato Pasquali, Elisabet Stener-Victorin, Bulent O. Yildiz, Antoni J.
Duleba, Kathleen Hoeger, Helen Mason, Roy Homburg, Theresa
Hickey, Steve Franks, Juha Tapanainen, Adam Balen, David H.
PCOS Forum: Research in Polycystic Ovary Syndrome Today and
Revised 2003 consensus on diagnostic criteria and long-term health risks
related to polycystic ovary syndrome (PCOS) (2004). Hum Reprod;
Ridker PM, Glynn RJ, Hennekens CH (1998). C - reactive protein adds
to the predictive value of total and HDL cholesterol in determining the
Saleem U, Khaleghi M, Morgenthaler NG, Bergmann A, Struck J, Mosley
TH Jr, Kullo IJ. (2009). Plasma carboxy-terminal provasopressin
(copeptin): a novel marker of insulin resistance and metabolic
syndrome. J Clin Endocrinol Metab; 94:2558–64.
Talbott E, Clerici A, Berga SL, Struck J, Detre K, Daniels T,
Engberg RA (1998). Adverse lipid and coronary heart disease risk
profiles in young women with polycystic ovary syndrome: results of a
XQ, Dong XY (2008). Obestatin: its physicochemical characteristics
Taskin MI, Bulbul E, Adali E, Hismiogullari AA and Inceboz U (2015).
Circulating levels of obestatin and copeptin in obese and non-obese
women with polycystic ovary syndrome. European J. Obstetrics and
Tenderenda-Banasiuk E, Wasilewska A, Filonowicz R, Jakubowska U,
Wasz-kiewicz-Stojda M (2014). Serum copeptin levels in
Voors AA, von Haehling S, Anker SD, Hillege HL, Struck J, Hartmann O,
OPTIMAAL Investigators: C-terminal provasopressin (copeptin) is a
strong prognostic marker in patients with heart failure after an acute
myocardial infarction: results from the OPTIMAAL study. Eur Heart J,
30:1187–1194.
Lipoprotein lipid concentrations and cardiovascular risk in women
with polycystic ovary syndrome. Journal of Clinical Endocrinology &
Metabolism.; 61:946–951. [PubMed: 4044782]
Zhang JV, Ren PG, Avisan-Kretchmer O, Luo CW, Rauch R, Klein C,
Hsueh AJ. (2005). Obestatin, a peptide encoded by the ghrelin gene,
opposes ghrelin's effects on food intake. Science 310:996-999.
analysis of the relationship between obestatin and ghrelin levels and
the ghrelin/obestatin ratio with respect to obesity. Am J Med Sci;
Zulfikaroglu E, Islimye M, Tonguc EA, Payasli A, Isman F, Var T,
Danisman N. (2011). Circulating levels of copeptin, a novel